Infinite-dimensional Representations of Real Reductive Groups
نویسنده
چکیده
is continuous. “Locally convex” means that the space has lots of continuous linear functionals, which is technically fundamental. “Complete” allows us to take limits in V , and so define things like integrals and derivatives. The representation (π, V ) is irreducible if V has exactly two closed invariant subspaces (which are necessarily 0 and V ). The representation (π, V ) is unitary if V is a Hilbert space, and the operators π(g) are unitary.
منابع مشابه
Proving Admissibility of Irreducible Unitaries
• Higher commutators • Godement’s principle: bounding dimensions of irreducibles • The von Neumann (strong) density theorem • Lie’s Theorem on irreducible finite-dimensional representations of connected solvable groups • Separating families of irreducible finite-dimensional representations • Subrepresentation Theorem for finite-dimensional representations of reductive linear real Lie groups • T...
متن کاملThe size of infinite-dimensional representations
An infinite-dimensional representation π of a real reductive Lie group G can often be thought of as a function space on some manifold X. Although X is not uniquely defined by π, there are “geometric invariants” of π, first introduced by Roger Howe in the 1970s, related to the geometry of X. These invariants are easy to define but difficult to compute. I will describe some of the invariants, and...
متن کاملAdmissible Representations and Geometry of Flag Manifolds
We describe geometric realizations for various classes of admissible representations of reductive Lie groups. The representations occur on partially holomorphic cohomology spaces corresponding to partially holomorphic homogeneous vector bundles over real group orbits in complex flag manifolds. The representations in question include standard tempered and limits of standard tempered representati...
متن کاملParameters for twisted representations
One of the central problems in representation theory is understanding irreducible unitary representations. The reason is that in many applications of linear algebra (like those of representation theory to harmonic analysis) the notion of length of vectors is fundamentally important. Unitary representations are exactly those preserving a good notion of length. The paper [4] provides an algorithm...
متن کاملKostant Homology Formulas for Oscillator Modules of Lie Superalgebras
We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009